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Absn.act--The instability analysis of Part I is extended to the breakup of viscoelastic threads in fluid media 
(also possibly viscoelastic). Critical Growth rates and wave.numbers are calculated in terms of the 
viscosity ratio, the Ohnesorge numbers (continuous and dispersed phases), and elasticity numbers for each 
of the respective phases. Comparisons with results for Newtonian systems indicate viscoelastic threads to 
be less stable than Newtonian threads under similar conditions. Also, the critical wave-numbers observed 
with viscoelastic threads can differ significantly from those observed with Newtonian systems, particularly 
if the relative magnitudes of elasticity of the dispersed and continuous phases are quite different. Systems 
with similar magnitudes of elasticity in each phase exhibit wave-numbers similar to Newtonian systems of 
similar viscosities. 

Experimental results obtained from observations of fluid thread breakup in a Taylor four-roller device 
provide a basis for checking the predictions of the lineararized theory for both Newtonian and viscoelastic 
systems. In general, the agreement is good and the theoretical predictions of Parts I and II seem to be 
reasonable representations of experimental fact. 

INTRODUCTION 
The instability of stationary cylindrical bodies of Newtonian fluids has been analyzed in Part I 
of this paper. The corresponding problem for non-Newtonian viscoelastic fluids is considered 
here as well as the comparison of the predictions with experimental observations on both 
Newtonian and non-Newtonian systems obtained with a Taylor four-roller apparatus. 

Previous work on the instability of viscoelastic cylindrical fluid bodies has been mainly 
concerned with the breakup of laminar jets in inviscid fluids. Middleman 0965) first analyzed 
this problem assuming that the viscoelastic jet was that of a linearized Oldroyd fluid. He 
showed that a viscoelastic jet will be less stable than a Newtoniau jet, under identical dynamic 
conditions. Supporting experimental results with slightly "elastic" polymer fluids were obtained 
later by Krosser and Middleman 0969). Golden et al. (1969) analyzed this problem using a 
general linear viscoelastic constitutive equation and expressed their results in terms of the 
complex viscosity function. Like Middleman, these investigators derived a characteristic 
equation for the disturbance growth rate analogous to Weber's equation for Newtonian fluids; 
the only difference being that the Newtonian viscosity was replaced by the complex viscosity 
function. The results of this linear analysis also showed the viscoelastic jet to be less stable 
than the Newtonian jet. In the same paper, these investigators also reported experimental data 
on the breakup of Newtonian, inelastic non-Newtonian, and viscoelastic jets; a later paper by 
Golden et al. 0972) reported data on jets of inelastic non-Newtonian fluids with yield stresses. 
The inelastic non-Newtonian fluid jets exhibited instabilities similar to Newtonian jets when the 
viscosities corresponded to the structurally degraded non-Newtonian fluid exiting from the 
capillary tube. The viscoelastic jets exhibited breakup patterns quite different from the 
observations with the Newtonian and non-Newtonian inelastic jets. In particular, no discernible 
wave formation was evident and the first visible disturbances appeared as large droplets, 
randomly distributed and connected by smaller diameter continually thinning threads. The first 
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appearance of these droplets occurred at "breakup" lengths shorter than those obtained for 
Newtonian systems with comparable zero-shear viscosities. The final breakup lengths of the 
beaded threads, however, were found to be significantly higher than those for similar New- 
tonian jets. 

Obviously, the irregular breakup patterns observed with viscoelastic jets do not correspond 
to the predicted disturbance growth patterns of the linearized analysis, even qualitatively. This 
does not infer, necessarily, that the linear analysis is invalid for describing observable breakup 
phenomena of stationary or uniformly moving viscoelastic threads. Instead, it may be argued 
that a viscoelastic jet does not represent a truly relaxed, stationary thread. In particular, 
because of shear in the tube nozzle, the jet may experience stress relaxation over a jet length 
comparable to the breakup length, or even greater. Under such conditions, the breakup behavor 
could deviate markedly from that of a relaxed stationary thread. Moreover, a beaded thread is 
well-deformed as compared to that considered in the linearized theory. Because of these 
effects, the breakup of viscoelastic capillary jets does not represent a particularly useful 
experiment in testing the validity of the linearized analysis. It would appear that some of the 
experiments first proposed by Taylor (1934) for studying drop extension and thread breakup in 
immiscible systems are more meaningful in this regard. 

In the present paper, we use the methods of linearized stability theory to analyze the 
instability of a stationary viscoelastic thread in another medium, also possibly viscoelastic. 
Linear viscoelasticity is assumed to hold and the results are expressed in terms of the complex 
viscosity functions of each phase. The results of Middleman (1965) and Golden et al. (1969) 
arise as special cases of the analysis, just as Weber's equation arises as a special case of 
stationary Newtonian thread problem. The theoretical predictions of the analysis are checked 
with experimental data on stationary thread breakup in a Taylor four-roller apparatus. Data are 
provided for both Newtonian and viscoelastic systems which cover a wide range of dispersed 
phase and continuous phase material behavior. In general, the results provide various insights 
into the mechanics of the breakup process, the roles of the physical forces, and the validity of 
the linearized theory. It is useful in understanding not only the breakup of jets, but also more 
generally, the breakup of fluid threads in fluid media. 

SMALL DEFORMATION FLOWS OF VISCOELASTIC FLUIDS 

The behavior of viscoelastic fluids in small deformation flows is describable within the 
framework of linear viscoelasticity. The constitutive relation appropriate to such behavior is 
given by (Bird et  al. 1977): 

~- = - f]~ qb(t - t') ~(t')dt' [11 

which specifies the stress field ~" at time t as an integral of the current and past values of the 
strain rate y. The quantity qb(t- t') is the relaxation modulus which appropriately weights the 
strain rate effects of previous history. Equation [1] is often referred to as the Boltzmann 
equation for linear viscoelastic behavior. In the case of Newtonian fluids, • = ~/8(t), where 8( t )  

is the Dirac 8 function and ~" depends only on the instantaneous value of q at the moment t '  = t. 

Here we consider a class of oscillatory flows for which the strain rate and stress fields are 

described by 

= Re{q*e i~') [21 

~- = Re {~.*e i~'} [3] 
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where o~ is the frequency of the oscillation, and Re{ } denotes the real part of the complex quantity { }. 
The quantities ~/* and ~'* are complex strain rate and stress amplitudes, 

Substituting these expressions for ~" and y into the Boltzmann equation [1] we find 

1"* : - n ' q , *  [4] 

where ~;* is the complex vixcosity function defined by 

n* = foO(s) e-~'ds [5] 

and s = t - t'. Hence the complex viscosity function represents a one-sided Laplace transform 
of the relaxation function, i.e. ~(ioJ). 

Based upon extensions of the simple single element Maxwell model to multiple elements it is 
possible to obtain the following form for • corresponding to the generalized Maxwell model 
(Bird et al. 1977, pp. 278-279): 

O(S) = ~ I  [(~/qe-s/AQ/Aq] [6] 

where ~;q and Aq are the viscosities and time constants of the individual viscoelastic elements, 
respectively. From molecular theory results of Rouse and empirical observations, Spriggs (1965) 
proposed the following simplifications:t 

A •  _ T o  
,1~ = ,~o Y~ A. q"Z(.) 

q = l  

[7] 

~A Aq q. [8] 

where Z(x)= ~ q-~ denotes the Riemann-Zeta function. We then have 
q = l  

or, replacing (ko) by 

= _ _ ~ [ ~ / q " - i ~ A  '~] 
Z(K) ~q2. + (,,,A)21 j [9] 

_ . q ,  ® 1 []o] 

Hence the fluid behavior for small amplitude oscillatory motions can be obtained from [2] to [4] 
and [10] by specifying three material parameters: the zero-shear viscosity ~o, a time constant A, 
and a slope parameter x in the power-law region. Such a description has been found to describe 
the experimentally observed behavior of viscoelastic fluids undergoing small amplitude oscil- 
latory flows in viscometric instruments (Huppler et al. 1967). 

THE INSTABILITY OF LIQUID THREADS IN VISCOELASTIC SYSTEMS 

By taking a two-sided Laplace transform of the iinearized equations of motion, we obtain 

- ~ . ~  = vO + v.÷ = v,0 + ,~(~)[v • ~ ]  [111 

there, the Weissenberg hypothesis is considered to eliminate an additional parameter, the shift factor, in Spriggs model. 



388 WEI-KUO LEE et al. 

where the terms with a " ^ " are the transformed quantities defined by 

~ ( e ) =  f ~ ( t ) e  *t dt.  [121 

The quantity -~(~) is equivalent to "O*(~), the complex viscosity function at the frequency e, i.e. 
~(E) = ~(E)= TI*(E). We also can take the two-sided Laplace transform of the equation of 
continuity, and by introducing the Stokes' stream function, obtain the velocity componets: 

r = r  cg--Z r c~r " [13] 

From this point the analysis follows the same procedure as presented in the preceding paper on 
Newtonian systems. By replacing _u by _t/, 6 by 6, 7/by -~, U by "0d'Oc, etc. an identical form of [10] in 
the preceding paper (Part I) can be obtained. 

In Newtonian systems ~ = rl, and mathematically we have the Newtonian problems des- 
cribed previously. In non-Newtonian viscoelastic systems, the problem is somewhat different 
since ~ is a function of e, the frequency of the disturbance wave on the thread. Hence, the 
instability problem depends not only on the physical properties of the fluid systems involved, 
but also on the kinematic conditions of the disturbance waves. 

To close the problem, a suitable theological constitutive equation is required. Since we are 
dealing with small disturbances where linearized stability analysis is valid, the motions are 
assumed to be within the domain where linear viscoelasticity theory can be applied, i.e. small 
deformations. Thus, it is reasonable to use a constitutive equation based on linear visco- 
elasticity. Owing to the fact that it contains easily measurable parameters and accurately 
describes real material behavior, the relation given by [10] is used here. 

Hence the problem consists of solving the individual motion equations for the thread and 
continuous phase and then coupling these results with the same boundary conditions as given in 
Part I. It should be noted that the results cover the full range of possibilities, i.e Newtonian 
threads in Newtonian or viscoelastic continuous phase, and viscoelastic threads in Newtonian or 
viscoelastic continuous phase. 

The dimensionless parameters in the problem can be summarized as (refer to the parallel 
relation in [10] of Part I): U = (~o/~c); G = (pdpc); S = (aa~oc/~r); Tc = (crAc/2a~oc); T~ = 
((rAo/2a*loo); X = ka: Ko and Kc. In order to simplify the problem, only the limiting case where 
O h o -  Ohc ~ 0 is considered since the Ohnesorge number is usually very small in the case of 
liquid threads immersed in liquid media. We can also eliminate the density ratio, G, and discuss 
the problem with seven parameters if both the dispersed and the continuous phases are 
viscoelastic fluids. 

The problem is then analogous to that described by [14] of Part I with U replaced by 
U = ~ d ~ c .  From [10] we can write 

1 

and 

U - n o o ~ *  _ I-I ~ [15] 
VocO~* --  0~.1 

where H is the ratio of zero-shear viscosities, ~oo/~oc; qb*(~) can be considered as a measure of 
the viscoelasticity; and U can be considered as the ratio of apparent viscosities. If either the 
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dispersed phase or the continuous phase is Newtonian, the corresponding ¢* will reduce to 
unity. 

Numerical results 
The following numerical evaluations were made based on the analogy with [14] of Part I, but 

extended here to viscoelastic systems. Note that, in all cases, higher growth rates and more 
unstable systems are predicted for viscoelastic fluids. 

Figure 1 shows the result for systems with equal viscosities. It can be seen that the 
(dimensionless) growth rate SVD( = Svc here) increases with the increases of TD and To. The 
results for Newtonian systems are given by the curves with TD = Tc = O. For viscoelastic 
systems, the values of S are always higher than the Newtonian cases. Moreover, it can be seen 
in figure l(a) that X*, the wavenumber corresponding to the maximum growth rate S*, is 
the same in all cases of equal "elasticity" in both phases (TD = Tc, ~cD = Kc). This result will not 
be true when TD# Tc as shown in figure l(b). 

Figure 2 shows plots of the dimensionless critical growth rates and wave-numbers (S* and 
X*) for two systems with H < 1.0. The argument mentioned in the last paragraph is still true 
since vertical lines can be drawn at X* = 0.4134 for H = 0.01 and 0.5677 for H = 0.1. When the 
magnitudes of elasticity are different in the two phases, a network of S*-X* plots show that 
the increase of elasticity of continuous phase increases the value of X*, whereas the elasticity 
of dispersed phase shows an opposite effect. Since the wavenumber can be used to predict the 
size of broken droplets, the results for cases with equal elasticity in both phases imply that the 
ultimate drop size resulting from the breakup of a thread is independent of the absolute 
magnitude of the elastic effects in the phases. Moreover, the results in figure 2 also imply that 
the size of droplets can be altered by changing the relative magnitudes of the elasticity in the 
dispersed and the continuous phases. This could be an interesting result, particularly to those 
concerned with multiphase mixing and dispersion of viscoelastic systems. It should be noted 
that the bottom curves in figures 2(a) and 2(b) are for cases of Newtonian continuous phase 
(Tc =0) or dispersed phase (To =0) respectively; they are also the lower bounds of this 
network. 

As for the results in cases where H > 1, figure 3 shows the results for systems with H = 10. 
The "elasticity" still increases the instability (or growth rate), but a different behavior is noted 
for the H > 1 case than for the previous H < 1 cases (figure 2). In particular, a reverse effect of 
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Figure 1, Dependence of disturbance growth rate on disturbance wave number; in viscoelastic systems 
(TD >- O, Tc --- 0) with ~oD = ~7oc (or H = 1.0). 
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Figure 2. Effects of continuous and dispersed phase elasticity on the critical growth rate and critical wave 
number. (a) H = ~oo/~oc = 0.01, and (b) H = 0.1. 

the dispersed phase and continuous phase elasticities is obtained (compare the To, Tc lines of 
figures 2 and 3). 

This result is more apparent in figure 4 which gives the dependence of X* on H. In this 
figure it is clear that in systems where ~oa!~oc<0.2, an increase of "elasticity" in the 
continuous phase increases X* and such an increase in the dispersed phase decreases X*. A 
transition range is found around H ~ 0.2 and opposite effects arise for all system with higher 
viscosity ratios. We also find a wider range of X* for viscoelastic systems where H < 0.1 than 
those where H > 1. In the latter cases, the elasticity effects on X* are minor. 

The above discussions are restricted to systems with Ko and Kc = 2. A study of the effects 
of K on the instability problem can be found in figure 5. The increase in K does increase the 
growth rate of unstable waves, however, the change is quite small, indicating that K may be 
considered as a minor factor in the instability problem. 
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Figure 3. Effects of continuous and dispersed phase elasticity on critical growth rate and critical wave 
number. The dispersed phase is significantly more viscous than continuous phase (H = 10). 
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The two extreme cases corresponding to H approaching 0 and 0% respectively, are shown in 
figures 6 and 7, and are based on the corresponding limiting relations in [16] and [15] of Part I 
for viscoelastic media. These figures justify that the observations made by previous in- 
vestigators that viscoelastic threads are less stable than Newtonian threads (all things being 
equal). 

E X P E R I M E N T A L  STUDIES  

In his pioneering studies on the breakup of liquid drops in various flow fields, Taylor (1934) 
employed a four roller apparatus like shown in figure 8 to study breakup in plane hyperbolic 
flow fields. In this apparatus, the continuous phase flow field is set up through the motion of four 
cylinders (or rollers) located at the corners of a square or rectangle. The dispersed phase drop is 
placed at or near the stagnation point of the flow field (point O) and is maintained at this point 
through slight tandem control adjustments in the rotation speed of the left-and-right side roller 
pairs (see Lee 1972 and Yu 1974). 
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Figure 5. Effects of parameters xo and xc on critical growth rate and wave number results. 
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Figure 6. Results for inviscid thread in a viscoelastic continuous phase. 

Figure 7. Results for a viscoelastic thread in an inviscid continuous phase. 

At low rotation speeds, the drop is deformed from its original spherical shape to that of a 
prolate spheroid by the external viscous (and elastic) forces acting on the interface. The major 
axis of the deformed drop coincides with the x-axis and the minor axis with the y-axis. As the 
rotation speeds of the cylinders are slowly increased, the drop becomes more and more 
extended, until at some point, the drop becomes unstable and continuously extends into a long 
fluid thread. Although the critical conditions for the initiation of this drop "breakup" process is 
of extreme importance in multiphase mixing and dispersion analyses (see Flumerfelt 1969, Lee 
1972, Tavgac 1972, Yu 1974), the interest here is in the instabilities associated with the second 
breakup process, i.e. the breakup of the long threads into fine droplets. To achieve the latter in 
the four roller apparatus under stationary conditions, a drop breakup experiment is conducted 
to the point where a long fluid thread is obtained, at which time, the rotation of the rollers is 
stopped and the breakup of the suspended fluid thread is observed. Nearly stationary (or 
quasi-stationary) conditions are possible in such experiments if the fluids involved are 

,. J 

Figure 8. Schematic diagram of four-roller apparatus. 
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sufficiently viscous, which was the case in the work here. Such an experimental approach has 
also been used by Rumscheidt & Mason (1962) in studies of stationary and extending thread 
instabilities. (The breakup characteristics of deformed droplets and extending fluid threads will 
be considered by the current authors in later publications.) 

In the studies here, we are interested in both the general qualitative characteristics of the 
thread breakup process as well as the quantitative measures of critical growth rates and critical 
wave numbers. In obtaining this information both still and movie photography was used with a 
Wild M-7 microscope system. 

In the Newtonian fluid tests, the continuous phase fluids were silicone oils of various 
viscosities, and the dispersed phases were different syrup, molasses, and glycerol-water 
solutions. In the viscoelastic tests, various aqueous polymer solutions (polyacrylamide solu- 
tions) were used as the dispersed phase, with the continuous phase being a silicone fluid. The 
properties of these fluids are given in table 1. 

In all Newtonian systems studied, the breakup pattern was quite regular with the thread 
exhibiting a uniform varicosity of increasing amplitude as the breakup process proceeds (refer 
to sequences shown in figure 9). Once breakup is achieved, the major drops formed are of 
nearly uniform size. Between each pair of major drops there is a small satellite drop, and 
between this first generation satellite drop and the major drop there is an even smaller second 
generation satellite drop. This trend was observed as far down as our optical resolution allowed. 

The measured critical wavenumbers X* (dimensionless) are shown in figure 10 as functions 
of the viscosity ratio. For comparison, we also show the predicted results from Tomotika's 
theory for systems with Ohc = OhD = 0. (In the experiments, the calculated values of Ohc and 

Figure 9. Thread breakup sequence. Newtonian thread (glycerol, v/v---0.26 Pa. s) in Newtonian continuous 
phase (silicone oil, ~c -- 30 Pa.  s). Initial thread diameter -- 0.0127 cm. 
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Figure 10. Comparison of linearized theory with experimental results--Newtonian and viscoelastic threads. 

Oho were small, on the order of 0.01 or less.) Although the data are scattered, the experimental 
results are in general agreement with the theoretical predictions. 

Critical wavenumber data were also obtained for the polymer solutions listed in table I. 
These are also plotted in figure 10. In each case the viscosity ratio was taken as the 
ratio of the zero-shear viscosities. All of the data correspond to small Ohc and OhD conditions, 
however, the elasticity number, To, varies from case to case due to the different material 
properties and the different initial thread diameters used in the tests. The particular value of To 
associated with each viscoelastic thread data point (or set of data points) is indicated directly on 
the figure. 

In general, the critical wavenumber results are also in rough agreement with the theoretical 
predictions of the linearized theory. In particular, figure 4 indicates that To should have little 
effect on X* at H ~ ~od~oc > 1. Although the data in figure 10 are too scattered to verify this, 
the general trend of the results (X* vs H) are in agreement with figure 4. 

It is interesting to note that systems with high viscosity ratios always take longer time 
periods before unstable varicosities are observed on the thread (as opposed to short time 
periods for low viscosity ratios systems). With the relatively high viscosity systems used here, 
and particularly for those systems where H > 1, the threads were found to maintain their 
cylindrical shapes for long periods after the flow had been stopped. In some cases, time periods 
on the order of I min or more were required before the occurrence of varicosities on the 
interface of the thread. 

Clearly, this significant reduction in varicosity growth rate stems largely from the viscous 
damping effects of the high viscosity thread. In addition, if the thread is sufficiently small, and 
surface active agents are present, significant dynamic interfacial effects (dynamic inter- 
facial tension, interracial tension gradients, and interracial viscosities) could arise which 
could also contribute to the retardation of varicosity growth kinetics. It is thought that 
such effects may account for the large scatter of the data in figure 10. In particular, 
from experiment to experiment the thread interface may be at different stages of equi- 
librium with respect to surfactant adsorption-desorption processes between the interface 
and the surroundings. Threads which had initially been streached out at rapid extension rates 
would initially have lower surface concentrations of surfactant and therefore high interfacial 
tensions. Also, large diameter threads would tend to equilibrate slower than small diameter 
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ones. In light of such possibilities, it is not surprising that accurate reproducibility of X* data is 
difficult. 

Even though the variance of X* data is rather large, it is somewhat striking that the 
threads break uniformly with regular wave patterns and drop sizes. The nature of the waves 
(refer to figure 9) and the general agreement with Tomotika's theory (figure 10) indicate that 
linearized stability theory has a degree of validity in this problem. 

In order to experimentally compare the relative instability between Newtonian threads and 
viscoelastic threads, the amplitude of the varicosity, ~:, at various times before breakup was 
measured on two individual systems with the same viscosity ratios, one for a Newtonian system, 
and one for a viscoelastic system. The fluid systems are indicated on figure 11. The results are 
presented on a semilogarithm scale with ~/a plotted vs time. Here ~/a = 1 corresponds to the 
breakup point and t' corresponds to the time before the breakup point. The comparison here 
shows that the viscoelastic thread is less stable than the Newtonian thread (with higher slope) 
except possibly for a short period before the breakup point. The almost linear relation for the 
Newtonian thread agrees with Tomotika's linear stability theory. 

In most experiments the breakup patterns for the viscoelastic systems were fairly uniform 
with evenly spaced drops eventually being formed. The observed varicosities on the viscoelastic 
threads were somewhat different from those observed with Newtonian systems. In particular, a 
bead-thread-bead patten was more evident with the viscoelastic systems (see figure 12). The 
appearance of beads is similar to what is observed with jets, however in the latter cases, they 
do not tend to be as uniformly spaced as observed here. 

In some cases, irregular breakup patterns were observed with the polymeric systems. These 
were generally observed with larger diameter threads and in the latter stages of the thread 
breakup process. Such irregular patterns might be due to some external mechanical vibration in 
the apparatus or to other physical effects (surface tension gradients resulting from surface 
contaminants; inertial effects; non-linear rheological effects, etc.) 

Finally, we should mention that the measured ratio of diameters of the final main droplets 
and that of the thread (initially) is fairly uniform for all of the different types of systems tested; 
this ratio taking on values between 2.0 and 2.6. Of course, this simply reflects the small effects 
of the elasticity number and viscosity ratio on X* for the ranges covered by the experiments 
and test fluids. 
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t'~ K ~ f'l VISCOELATIC THREAD: ! % SER AP SO IN 
- - ' "  ~ SILICONE OIL,,9oc. 381p.,.~¢.300p. ' 
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Figure 11. Experimental comparison of wave amplitude versus time for Newtonian and viscoelastic threads, 
each with similar viscosities and initial thread diameters. Note: t '  is time to breakup; i.e. t' = 0 corresponds 

to breakup. 
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Figure 12. Thread breakup sequence. Viscoelastic thread (0.75 per cent polyacrylamide in 80-20 water- 
glycerine solution, 700 = 15.9Pa. s) in Newtonian continuous phase (silicone oil, Oc = 30Pa. s). Initial 

thread diameter --- 0.0176 cm. 

CONCLUDING REMARKS 

The results obtained here clearly support the observations of other investigators that 
viscoelastic cylindrical fluid bodies are less stable than corresponding Newtonian systems, both 
with comparable viscous properties. However, observations here are somewhat more definitive 
since close approximations to true stationary thread breakup experiments were possible with 
tests in the four-roller device. Such experiments are certainly more desirable than jet breakup 
tests in studies of stationary and uniformly moving thread instabilities. Based upon the regular 
breakup patterns observed here (in most cases) and general agreement of the results with the 
linearized theory predictions, it would appear that the irregularities observed with viscoelastic 
jets, i.e. irregular bead-thread patterns, arise from effects other than those neglected in the 
linearized theory analysis. In particular, one must observe that jet breakup experiments, 
particularly for viscoelastic fluids, are only crude representations of true stationary or uni- 
formly moving flow conditions in the thread. Obviously, if the fluids have sufficuently large 
characteristic times, the stresses built up in the nozzle region can affect the instability behavior 
over .significantly large distances along the thread. Such stress relaxation effects are not 
included in analyses of stationary and uniformly moving threads like that presented here. 
Obviously, deviations between observations and predictions must occur when such effects are 
neglected. 

In general, the observations presented here support the validity of the linearized theory for 
describing stationary thread instability precesses. This is not surprising since the base flow in 
this case is zero motion. Other relatively successful applications of linearized theory, such as 
the predictions associated with the problem of a fluid layer heated from below, also have this 



INSTABILITY OF STATIONARY AND UNIFOI~ILY MOVING CYLINDRICAL FLUID BODIEg-II 399 

zero base flow characteristic, In the problem here, the apparent validity of the linear theory 
gives credence to the theoretical results of the present paper as well as those given in Part I and 
provides a basis for predicting breakup phenomena under conditions not always easily achieved 
in the laboratory. 
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NOMENCLATURE 

diameter of an undisturbed cylindrical thread, m 
= V ' ( -  1) 

wavenumber, m -1 
hydrostatic pressure, Pa 
a dummy number used in [6]-[14] 
a time parameter, (= t - t')(s), 
time, s 

previous time, (the superscript, is not a representation for derivative), s 

velocity vector, = (u. u,, us), m/s 
the extensional axis in the flow field of a four-roller apparatus 
the compressive axis in the flow field of a four-roller apparatus 
density ratio, (= PJPc) 
ratio of the zero-shear viscosities, (= ~od~oc) 
Ohnesorge numbers, (= (ao.p)m/,l) 
the real part of { } 
dimensionless growth:rate, (= aa*lo/O" in the systems considered in Part II) 
elasticity number, ( = #Al2a~o) 
viscosity ratio, (= ~ol~c) 
dimensionless wavelength, (= ka) 
the Riemann-zeta function 

Greek 
19l 

9 
V 

8(0 

lq 

7o 
K 

A 
( 
p 
o" 

T 

¢, 
¢o 

letters 
growth rate, s -1 
strain rate, s -~ 
gradient operator (defined in [I] of Part I) 
the Dirac delta function 
a frequency parameter defined in [10], (= ion) 
viscosity, Pa. s 
zero-shear viscosity, Pa. s 
a slope parameter for the power-law region 
characteristic time, s 
amplitude of the varicosity on an unstable thread, m 
density, kg/m 3 
interfacial tension, Pa. m 
stress, ea 
a memory function 
a function defined in [12] 
Stokes' stream function, m3/s 
frequency of an oscillation 

Superscripts 
the one-sided Laplace transform of a quantity 

^ 

the two-sided Laplace transform of a quantity 
* a complex quantity (except for S* and X* which correspond to critical growth rate and 

wavelength quantities) 
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Subscripts 
C continuous phase 
D dispersed phase 
r radial-component quantity in a cylindrical coordinate system 

V a quantity relating to viscous effects 
z axial-component quantity in a cylindrical coordinate system 
~h polar-component quantity in a cylindrical coordinate system 
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